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Hamiltonian perturbation theory to fourth order in the gauge-coupling constant is applied
to compute Li1schers effective hamiltonian for the zero-momentum gauge fields in a finite cubic
volume in order to understand some apparent gauge dependence at the two-loop level . This
allows us to confirm earlier results at a more rigorous level and to include new terms that min
coordinate and momentum operators, previously ignored. After that we live up to our promise to
give some of the details for the derivation of the effective hamiltonian starting from Wilson's
lattice action . which allowed a semi-analytic study of lattice artifacts. We also discuss some issues
related to two-loop lattice perturbation theory. For easy reference the continuum effective
hamiltonian and the lattice effective lagrangian, together with the specification of the boundary
conditions and the numerical values of the coefficients. are summarized in a separate section.

1. Introduction

In this paper we will analyse in more rigour and detail the finite-volume
expansion of SUM gauge theories on a torus. One of the most useful applications
of the finite-volume expansion turned out to be a detailed comparison with lattice
Monte Carlo calculations . Since the numerical accuracy and reliability of the
computer simulations have improved considerably over the past few years [1,21,
systematic differences showed up with the finite-volume expansion in the contin-
uum [3]. It was most natural to associate those differences with the effect of a
finite lattice . The results [4] of the computation, to be described in more detail
here, did indeed confirm that the observed deviation from the continuum result
and the spread of the Monte Carlo data is mainly due to lattice artifacts.
The finite-volume expansion is based on computing an effective hamiltonian for

the zero-momentum gauge fields, as first derived by Löscher [5]. In lowest order
this is just the Yang-Mills hamiltonian, truncated to these zero-momentum gauge

0550-3213/91/$03.50 © 1991 - Elsevier Science Publishers &V. (North-Holland)



184

	

P. tan Baal / Gauge theories in finite volumes

fields, with the bare gauge-coupling constant replaced by the renormalized one
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where c, is the (rescaled) zero-momentum gauge field

A'(x)=c;fL .

	

(1.2)

In the continuum, hamiltonian perturbation theory [5] will be applied as a reliable
means of deriving the effective hamiltonian for the zero-momentum modes to
fourth order in the coupling constant, which involves a two-loop computation. The
main new result in this paper is to provide the complete effective hamiltonian to
that order, which includes terms of the form c -' a-''/ac- not accessible in a
background field analysis [6]. Apart from these terms, the resulting effective
hamiltonian can be represented (with some good fortune) in a form identical to
what was derived from the background field analysis . On the lattice we will derive
the effective lagrangian in the zero-momentum modes, using the one-loop back-
ground field analysis . This yields a gauge theory on a lattice that has one link in
each of the spatial directions and is infinite in the time direction. We also analyse
in detail how to obtain the effective hamiltonian from the transfer matrix defined
by the effective lattice model. The spectrum of this hamiltonian can then be
obtained exactly as in the continuum [6], using a standard Rayleigh-Ritz varia-
tional analysis. Readers mainly interested in the results are advised to consult
sect. S.
The main mechanism behind the dynamics in intermediate ve'r-:7es is due to

incorporating non-perturbatooe effects associated to the Gribov horizon, or equiva-
lently, due to the topological non-trivial nature of configuration space. We have
discussed these issues at great length elsewhere [6]. Here we simply state that as a
consequence of the topological non-triviality, the configuration space for the
zero-momentum gauge fields is compact and can to a good accuracy be divided (for
SUM) in eight coordinate patches with transition functions essentially described
by gauge transformations. It can alternatively be formulated by defining the theory
on one of these patches, with appropriate boundary conditions on the wave
function 0(c)

a
0(c) = 0,

	

ar-
r;i~ (c) = 0,

	

at r; =7r,

	

(1.3)
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The appropriate choice of boundary conditions is determined by the quantum
numbers of the particular state one wishes to consider [6,71. For a cubic volume
these are labelled by the irreducible representation of the cubic group
(A ; , A ; , E ±, T1~, T,~) and 't Hooft's electric flux [8] (e; _ 1). Sect. 8 will review
which boundary conditions are associated to each of these states (with positive
parity).
At small volumes (or equivalently due to asymptotic freedom, at small coupling),

there is a quantum-induced potential barrier that separates the different coordi-
nate patches and the boundary conditions are irrelevant. As a consequence,
electric flux energies are exponentially suppressed. At intermediate volumes the
coupling is so strong that the potential barrier forms no obstacle and the boundary
conditions strongly dominate the dynamics . At yet larger volumes classical barriers
which separate coordinate patches, whose overlap was not yet taken into account
will no longer be obstacles either, but these effects cannot be incorporated `thin a
framework of a zero-momentum effective hamiltonian . From the comparison with
1Vlonte Carlo results and theoretical arguments this occurs at volumes larger than
about 0.7 fermi (with the physical scale set by a string tension of 420 MeV 2 ). This
is where for the tensor glueball one observes restoration of rotational svetry
[2,31. It is also the distance beyond which the topological susceptibility seems to
suddenly switch on [9].

It is clear that the accuracy of the results in the accessible intermediate volume
range is also determined by how accurate the effective hamiltonian can be
computed. This in itself is a perturbative computation, which is strictly separated
from the issue of the non-perturbative effects incorporated by imposing the
boundary conditions. Löscher computed the effective hamiltonian up to the ordei
O(g8/3

), where c = O(g'%-'"I
) [5]. This involves only a one-loop computation and can

be obtained in three different ways. The first is using degenerate (Bloch [101)
hamiltonian perturbation theory, the second [11]* is by calculating the euclidean
transition function from one to another zero-momentum gauge field and reading
off the effective hamiltonian that reproduces this transition function . The third
method uses a background field type calculation with the non-local gauge [6]

is the projection on the zero-momentum gauge field. Unlike in the second method

*The last two references apply this method to the O(N) model.

xN =(1-P)dt Ae +i[PA,,,Ae ], (1 .5)

where A~ =A,',crQ/2 (oQ are the Pauli matrices) and

PAtL = L -3f d3xA L(x) (1 .6)
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one does not integrate over the zero-momentum modes. However, in principle one
needs to determine the effective action for an arbitrary time-dependent back-
ground field c(t ). Nevertheless, after a simple rescaling, taking c(t) a time-inde-
pendent background field did reproduce to O(g8,") the correct effective potential,
and this was by far computationally the simplest method. We will address the
validity of this approximation by carefully considering issues concerning gauge
dependence and contributions at two-loop order.
The remainder of this paper is organized as follows. In sect . 2 we will summarise

problems we encountered by reconsidering the two-loop contribution to the
effective potential when using a time-independent background field. We also
analyse some issues concerning gauge dependence . Since, the two-loop corrections
contribute up to 3% to especially the energy of electric flux, it is imperative to
perform the calculations of the effective hamiltonian using a more systematic
method. For this we have used hamiltonian perturbation theory to O(g') described
in sect . 3. These calculations fortunately will confirm our earlier results [6]. It is
also worthwhile noting that the way we dealt with the Gribov problem uses in an
essential way the hamiltonian formulation. It is thus gratifying, from the point of
consistency, to also have computed the effective hamiltonian using the same
formalism. In sect . 4 we derive the effective action starting from Wilson's lattice
action, using the one-loop background field technique. It was our attempt to also
find the two-loop lattice corrections that made us aware of the problems discussed
in sect . 2. Sect . 5 describes how the effective action, which defines a transfer
matrix, can be used to determine the effective hamiltonian, thereby including some
important additional lattice artifacts . Sect . 6 will be dedicated to a discussion of
some aspects of lattice perturbation theory at the two-loop level for a time-inde-
pelident abelian background field. As we have argued, this calculation does not
give the complete result for the effective potential. Nevertheless, the calculation is
set up so as to be applicable in more general situations . In particular one can
obtain the lattice vacuum energies in the presence of a magnetic flux, imposed by
twisted boundary conditions [8], in a straightforward manner from the results we
present. Sect. 7 provides a discussion . Sect . 8 concludes the paper with a summary
of the results for easy reference . There we list the continuum effective hamiltonian
and the lattice effective lagrangian in a finite cubic volume, we supply the
numerical values of the various coefficients and review the assignment of the
appropriate boundary conditions . We also present a formulation of the effective
lattice theory that can be analysed using the Monte Carlo method.

2. Trouble with the background field

We will consider the background field method described in the introduction for
both the non-local gauge (eq. (5)) and for the Lorentz gauge XL _ (1 - P)d,,A, .
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These gauge conditions are invariant under spatially constant gauge transforma-
tions, which are the symmetries of the effective lagrangian and in the background
field calculation we only integrate over the non-zero momentum gauge and ghost
fields. To O(g4) it is straightforward [6] to compute the one-loop effective
potential for time-independent background fields (d is the space dimension)

V,(c) =L - ' j ?'IFr
2
+y21:r~ +y3, ri ;? +y.,Yrî+y_jYrt r, +

i

	

i

	

i <j

	

i

1 Ld-3
+
4

	

g~

	

+a2 ~F1 +a3

	

Fijrk +a4~Fi j?+a~det 2(e)
ij i,i,k

VI(0) = 3L - ' 7k = -48zr'-L- ' 1:k -4 .

	

(2 .1)

Table 1 contains the coefficients in terms of momentum sums for the two gauges.
By taking appropriate factors of L out, we take the momenta dimensionless, thus
k E 2 , Zd and we use the convention k = Ik I for the length of a momentum vector.
We have also included the coefficient a,, which gives the one-loop correction to
the kinetic term
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( dt

We note that all the coefficients for the terms which vanish when the background
field satisfies the equations of motion (i.e . those terms which vanish for abelian
background fields) depend on the gauge, but that the difference can be absorbed
by a resealing of the fields
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(2.2)

which transforms the results for the Lorentz gauge to those in the non-local gauge.
We now address the two-loop contributions to the effective potential for

time-independent background fields . For the non-local gauge this goes back to the
calculation of the two-loop vacuum energy [12] . In particular, having verified that
to O(g 2 ) the one-loop effective lagrangian is gauge independent, we should insist
that the two-loop vacuum energy is likewise gauge independent. This turns out not
to be the case if we restrict to time-independent background fields . To be more
precise, we take a vanishing background field to get the two-loop O(g2) contribu-
tion . The Feynman rules in the Lorentz gauge are exactly those of ordinary SUM
gauge theory, with the only difference that we sum (rather than integrate) over the
(non-zero) spatial momenta. The two-loop vacuum energy in the Lorentz gauge is
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TABLE 1

The coefficients as occurring in the one-loop effective potential, eq. (2.1), in the approximation of a
time-independent background field for the non-local gauge (1.5), Lorentz gauge (1 .6) and the Coulomb
gauge in the hamiltonian formulation of sect . 3 . The coefficients are to be summed over all non-zero

momenta, where k E (2-_ .7)' and k -_- jkI . When the momentum sums are divergent in three
dimensions we give the coefficients as a function of d. (Note that 'Y1 ., . ; have a finite d -> 3

limit and that all Y, are gauge independent)
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Fig. 1 . The two-loop Feynman diagrams that contribute to
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then obtained by summing the three diagrams in fig. 1, which after some simple
analysis (see eq. (19) of ref. [12]) yields (usually we will ignore terms that vanish as
d --), 3)

( )	8L&+n-3-0
P

	

8L + # O
P_ 2L

= 3gj)

	

k-'

	

+ 3gi

	

k-'.2L (~

	

L (2.3

The subsequent terms in the first identity for V, ~-~() correspond to the subsequent
diagrams of fig. 1 . For the non-local gauge we get exactly the wine contributions .
except for an additional "non-local" term coming from the Faddeev-Po
determinant. It was claimed in ref. [12] that this contribution exactly cancels
against the term proportional to Ek -2 in eq. (2.3). Actually, when we worked out
the two-loop Feynman graphs on the lattice, we discovered that the "non-local"'
vertex associated to the ghosts in eq. (22) of ref. [121 was wrong by a factor of -2.
such that now there is no cancellation . To have an independent check it is useful
to calculate the Faddeev-Popov determinant directly without using ghosts. e
find under an infinitesimal gauge transformation

5XN = ( 1 -P)amDm A+i[iP[Al ,A],A .] =(dm+ign â,,adQ,, +g2adQ.PadQ.),i

(2.4)

where we used that the background field vanishes and thus A,,= g0Q. has
non-zero momentum. The Faddeev-Popov determinant therefore contributes

iT- ' ~Tr ln(1 + igod~ ad Q~av 2 + g® ad Q~Pad Q~,ai:2 ) ~C	(2 .5)

to the effective potential . The expectation value is with respect to the gauge fields .
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After performing a Wick rotation one easily finds this to equal
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Together with (Q`(-p)Q,,(p))

	

this gives for the non-local gauge the
following contribution of the Faddeev-Popov determinant tc the two-loop vacuum
energy
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The first term corresponds to the second term in eq. (2.3), the second term is due
to the "non-local" vertex . The value of V,(0) does not actually influence the mass
spectrum, it is therefore useful to also compute the next field-dependent term in
the two-loop effective potential (which is proportional to gc

2/L). For theö
non-local gauge X,v we can use eqs. (2.25) and (2.26) of ref. [6], corrected for the
proper non-local four-point vertex. Alternatively one can for both gauges calculate
the three- and four-point vertices as a function of the background field and expand
the background field dependent propagator up to 0(c"). One finds, together
with the non-local vertex, which contributes gôL- '16Ek -- + 2E k-4), for the
non-local gauge
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whereas for the Lorentz gauge, after including the transformation of eq. (2.2) (i.e .
adding -gô(d - 1)2/(2dL) E k-''p-3 to the diagrams of fig. 1), one obtains

i
V2(L)(c) - go
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2
+31:k -2 ) +
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3
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J: k-4

The algebraic manipulation programme FORM [13] was used for some of the
calculations .
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We clearly observe a gauge dependence, which cannot be transformed away y
field redefinitions, whereas furthermore they differ from the correct expression
(which does coincide with what we have used in the past) to be derived in the next
section*

2
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VZ(C)=
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The found discrepancies are of the same order of magnitude as the actual terms
(e.g . E k-4 = 0.0106075, whereas E(6z7 2W 1 = -0.

	

76256).

	

e performed the
hamiltonian analysis to be presented in the next section primarily to fix the
discrepancies. The reason behind the gauge dependence is that it is not legitimate
to take the "adiabatic approximation" of a time-independent background field, as
will be clearly seen in the hamiltonian formulation. The second meth

	

[III to
compute the effective hamiltonian discussed in the introduction is based on
calculating the euclidean transition function . There one also integrates the zero-
momentum modes and the time dependence is therefore consistently included .
found this method too complicated at higher order. Despite vigorous attempts we
were unable to reliably include the "non-adiabatic' correction in the background
field method, the main obstacle being caused by the ghosts in covariant gauges.
Nevertheless, at one loop (up to a possible field redefinition) one does obtain the

correct result, which is why we still use the background field technique to include

the lattice artifacts . The lattice calculation would otherwise be too voluminous.

3. amiltonian perturbation theory

Here we will describe the computation to ®(g®) of the effective hamiltonian for
the zero-momentum gauge fields, using hamiltonian perturbation theory [141 . We
will not keep track of field-independent terms proportional to g;, since they do
not contribute to the mass spectrum . Including them would furthermore require a
three-loop computation.
The SUM Yang-Mills hamiltonian in the Coulomb gauge djAj = 0 is given by

[5,141

H - 'g2 (~L ddx d dyP -1127ra(x)P 112K(x , y) 'P'1'`~;(y)P-1/2 + 12 LddxF,j(x )-~
,0

	

4g ,o

(3 .1)

where the gauge fields are transverse (djA j(x) = 0), -rr;(x) = E,(x) - djdk -diEi(x) is

*Note that lime) - 3((l - 3)E p - ; = - 1 /(?r -- ) (see ref. [5]) .
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the transverse electric field, and p is the jacobian associated to the gauge fixing*

At

where U is defined by
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p( A) = det'( -

S =
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The prime denotes that the zero modes, associated with the global gauge invari-
ance. are omitted. The non-abelian Coulomb Green function is
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The sum in this equation is over all different orderings of the integers ni > I and
10> is the vacuum state for Ho . We now expand H1
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the lowest-order hamiltonian is given by

[b,"(k),b,'(k)`J = 13 33k .12k 'h

ktkf
k _

k _

In terms of (transverse) creation and annihilation operators
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1

	

k b (k)°,b°(k) = E� + - y 2kb (k)'bj(k) .

	

(3.10)
k*o

	

k*o

As usual, the vacuum 10> is defined by b,-°( (k)J0> = 0 and one can use the creation
operators to form a Fock space . We can now write H, in terms of the operators
b,(k ), b;(k )', c;' and e,° and work out the Fock space expectation values, which
can be readily implemented in an algebraic programme as follows. Commute every
creation operator b;(k )' to the left and every annihilation operator b°( k) to the
right, using eq. (3.9) and

b'(k)S"(®E)=S"(®E)ba(k)+S"(AE+k),

193

(3 .8)

(3 .9)

S"(®E)ba(k)' =b, (k)'S"(®E) +S"(®E+k),

	

(3.11)

*Scaling c -> g� / ;L' - `11 ;c, q - L("- )/-'q and p - L("-1)/ :!p will give the conventions of ref. [5] .
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where

After this procedure has been completed only" terms with no creation or annihila-
tion operators will survive, and they correspond as usual to the sum over all
possible contractions . 1~urthermore, if ~1E ~ 0, S"('E) is to be replaced by
( ® :~ E)® " . If ~E = 0 the projection (1 - 10, <0 I ) is operative and S"(0) is to be
replaced by 0.

major complication over no

	

al hamiltonian perturbation theory is that H'
contains non-commuting operators c and e. Thus U{®a+ ~ will become a hermitian
operator

	

~ja,}(c , c) acting on the Filbert space of wavefunctions
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~ Cbein,g the configuration space of the zero-
rnon~entum gauge fields c). f these operators would have been commuting one
can show that

	

~ ® ~,i;, where tlâ~ is the sum of all connected diagrams occurring
in the diagrammatic e~-pansion of G, . t is, however, crucial that for the case at
hand disconnected diagrams are taken into consideration too, because the discon-
nected pieces are no`v operators which do not commute. These additional terms
are preeisely of the form encountered in the previous section regarding the gauge
dependence of the effective potential. Taking a time-independent background field
in thti lagrangian formulation is more or less equivalent to putting the commutator
of c' with c equal to zero in the

	

amiltonian fortriüiätiun.
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a in terms of the background field. The most difficult part is
the contribution due to the Coulomb Green function, which we will work out in
t e momentu

	

representation . hor ease of computation we will put L = 1 . The
proper ~, dependence can be easily recovered on the basis of dimensional argu-
ments, In the following also momentum sums will be im~'icitly assumed :
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where

P

Thus, ®K is a function of q and c that vanishes for q = 0. 1t contributes to n-point
vertices (n > 3) and it is sufficient to expand AK to second order in c and go,
when we want to determine the effective hamiltonian to fourth order in go. To
complete the expansion of the hamiltonian we have (ignoring L dependence)
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=

	

2 (cabd °
b)2

	

zq°( -

	

)

	

;b(

	

)qb(

	

)
4go ®

	

4go

(k . ca )
2

	

[(k . c)
2]2

k 4 - 2k8

- igokigj(k)gb(1)ql ( -k - 1 ) cabc

+ goCjgb( 1)£abc~1~( -k - 1 )q;(k) Ecde

2
go

+ 4 q°( -1)q;(1 - m)Eabcgia(m - k)q;(k) £cde 9I (3 .l7)

Bij(k)=8jk 2 +2k-adc+(adc) 2)+adci adcj -2adcj adci . (3 .l8)

We will now analyse H, in more detail . First we consider the terms where P
contributes . To the required order we find

1-A'(k -1)k-Aa(1-k)

	

k-Aa(I -k)1-Aa(m -1)m -Ab(n -m)n . Ab(m -n)
k 212

	

2k 212n12n 2

2 1'ga(k - 1)k - g by - k)

	

(k . C d )2sab+(k'Ca )(k - cb ) - (k-ca)(1-cb)
- _go

	

k212

	

Sab +

	

k4

	

k212

(3 .19)
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where

p = ln(p(A)/p(0)) = Trln(1 +i ad A,(x)ajak 2) (3.14)

and ®K is defined through

K b( I, k) =Ab(k) +®Kjb(1, k), (3 .15)

with

Aij(k) =8il +k -2 adci(1 +k-adc/k 2 ) -2 adc, . (3 .16)
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This allows us to evaluate (ignoring a field-independent O(g() term)

h')-!A ;(k)[ p;'(-k), [p,pi (k)]] + x[Pi'(-k),P]A ;'(k)[P,p;(k)]

2

+ go [eia ~

	

ei'l
] +

go [el'
, P] [P, eal

4

	

8

(32((k . 1)2- k 212 )

	

gôC2(k212-(k'l)2)

	

12

	

14

k+l+m=o 2k'l
60

'rfi'

	

4dk 2 12jn2 k 2M2 m -'

9g2

	

15g2C 2

	

92C
2

2 dk' - ,d 2k 4 + 2d'k'1 2 .

One can use for example that E.;,, �(k . cc')2k-' = Ek ;C2k - ' _

	

C2d- 'k-4 . Alter-
natively, for any analytic function F(c) invariant under the cubic symmetry

This identity will also play an important role in the two-loop calculation.
The only other terms where p can contribute to the effective hamiltonian to

0(g4o ) are

2
(2) -

	

go

	

~,

	

g(~

	

>

	

,.la o - - 4k2
[ei P ] ~li ( -k) EuhdfdF.4' CÎpJ{ ( k ) - 4k2pl'(

-&)c
(k) [ e ,

d2k 212

c -'	3

	

i) -'F
F(c) = F(0) +

18

	

y,=

	

~c"'
(0) + 0( C4 ) .

	

(3 .2l)
a.c~

(3 .20)

(3 .22)

The hamiltonian truncated to the zero-momentum fields contained in H, is given
by

2

	

1go

	

2
h, _

	

2 e, e i" +

	

2(EahdCi'C(3 .23)
4g0

Next we consider the terms in H, that are quadratic in p and q. Those that



contain e are given by

h, = - KO

The term not containing e is
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2k2e`q~( -k)£°hc(1 +k adc/k2 )cd EdgfC V;(k)

g(i

	

2)c-
d

	

R

	

f2k2p`(-k)chEQhc(1 +k adclk2 )cd ed~fgj (k)ej

2

g()2 eagh(-k)£ahc(1 + k - ad c/k 2 )cd Edg q;(k)ef -

	

(3.24)2k

	

f

h3 = ;p°( -k) A (k)p;(k) + 'q°( -k)B h(k)q!(k) -

	

(3.2s)

Finally we have to consider in H, the three- and four-point vertices, which can
be somewhat simplified if we take into consideration that they only contribute at
the two-loop level and therefore give at least an O(g( ) contribution to the effective
hamiltonian (or any of the operators U). Furthermore up to O(g;) they can only
mix with h, and h 3 (h, can at most contribute to the O(gn)-field-independent
constant, which is not included). Since h, does not depend on p and q, it can only
contribute through disconnected diagrams and therefore enters through commuta-
tor terms (since if h, would commute with everything, the disconnected diagrams
would precisely cancel). Again this implies that this will at most contribute to the
O(g)))-field-independent term. We are left with mixing with h; only . Therefore, at
two-loop e does not enter in the terms in H, that contribute to the effective
hamiltonian to O(g4 ), which implies that we only need to consider connected
two-loop diagrams . Any term in H, that is proportional to C'`, will contribute at
two loop to the effective hamiltonian proportional to g(;C2 . This implies we can
perform the "projection" of eq . (3.21) to the O(C2) terms in H, . This will lead to
some considerable simplification . Collecting the "projected" three-point vertices
yields

h4 - -tgokiq~(k)9h(l)gj~( -k - 1),-ab, + goCjq ( I )Euhcgjl( -k - 1)qi (k)fcde

`go pi
(1)qh( -& - 1 )~ahcCjlp~1 (k)Ccdc " - i

go C
212p;(1)kjgh( -k - 1)pr(k)"ahc -k

	

Mk

(3 .26)

where the last term underwent simplification, whereas other terms vanished due to
transversality (after having applied the "projection"). Similar manipulations will
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reduce the number of terms in the four-point vertex

h; = g ,a( - 1)qj(1-

	

)Eah,qd(»a -
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gjC12 ~1:
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- k)p;; (k ) aabSde + 5aedhd)2&W k -

+ -,	'Pa( -1 )1 ' qh(l -

	

)qd(

	

- k)P, (k)]Oae4d - Badahe)

	

(3.27)
)I2

e can simplify the two-loop calculation even further, by diagonalizing the
quadratic part of the hamiltonian for an abelian background field, which can then
take over the role of O (the same technique was applied in eqs. (2.25) and (2.26)
for the path-integral formulation in ref. [6]) . We need to achieve this only to
second order in c, which is indeed determined by an abelian background field
through the use of gauge invariance. First we apply to this order the canonical
transformation

1

	

c2
qi(k) =

( Slj
+

jk2 ad
ci ad cj qj( k)

	

= ~1 + Mk2

	

q`(k)

	

'

c2
pi (k) =

	

8ij-

	

2 ad c; ad cj

	

pj ( k)=

	

1 -
(	2k

	

3dk2 p'(k) ' (3.28)

The terms between the square brackets follow after the "projection", eq. (3.21). In
terms of the new coordinates and moments the quadratic part of the hamiltonian
is given by

2hi( -k)pQ(k) + ?~Îi( -k)(k + ad c)ah9;'(k) .
k -A 0

(3 .29)
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Let us take c° =CA3 and define

in terms of which

qi ( ) _

	

(4~ ^; (k)
+ 4~~

	

^,(2< lt
)) ,

	

4;o(k) =
4
^3

2

	

; (k) ,

ti/2-
TbPpi (k) =

	

2 (P~(k)

	

;(k)),
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(3.30)

Ho =

	

y,

	

1 ^-«( -k)pa(

	

) +°(k + ac)2gt

	

-

	

)g«(

	

) .

	

(3.31)
ae(®, ±),k -*®

If h 4 and h; are the three- and four-point functions expressed in terms of the^
transformed momenta and coordinates and if 10> is the (c-dependent) vacuum for
Ho (i.e. Ho 10> = ÊoI Ô> _ ;~a, k # o Ik + ac 1 1 Ô>), then the two-loop contribution to
the effective hamiltonian H' takes the form

199

^^
(1 - 10)(01) ^^ ^^^

(0 1

	

4

	

(Eo - Ho)

	

h410) + <®Ij15 10>,

	

(3.32)

which can be computed most easily using Wick's theorem and

8,,,+P,03k+1,0 ~jkj

21k+acl j( k2

COIPa(k)P~( 1 )1 0> = ;Ik+acIS~+p,osk+t,0 (&'j
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(3.33)

Still a considerable amount of algebra remains due to the complexity of the three-
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and four-point vertices . We found the following result

h 41O>
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(3.35)
~0,1~®

For the same reasons as given for the two-loop contributions, h(; and h0 do not



mix with the other pieces in H, to 0(g,' ). Adding together what we have so f,

(2) + 0H(" = 0) + h1) 0

	

0 < 1'14

30

	

1

[02	40'	90

e necessity
the final a

anticipation of

f quite a few - miraculous- cancellations leaves
saver. Some of the terms are placed between square
ore magic to come.

All that remains to be done is a one-loop calculation of the overatars,
H, = h I + la, + h3 and combine those to obtain the one-
ing disconnected parts) to the effective hamiltonian. We discussed earlier
can be performed by algebraic manipulation, which we have used as
dent check on our calculations by hand. If we retain in H,, only h3, the
tion to the effective hamiltonian corresponds to the agroundsute enerav of a
harmonic c-dependent potential. This truncation is what in the lagrangian
lation corresponds to restricting the background field to be time-independent . We
have applied the techniques of appendix E of ref. [51 to compute this truncated
one-loop result to OW). The result (H,2,) is again of the form of eq. (2.1) and the
relevant coefficients are given in table 1, for comparison with the background field
results in the Lorentz and non-local gauges. Also included is a,, which is obtains
by applying eq. (3.4) with H,(c = 0, e), rather than H,(c,e = 0) . We conclude
addressing the contributions that mix e and c, where the ordering of the operators
is important. We chose to evaluate them by considering H' = (H , + Hk)12, whereL
in H'LAR) all momentum operators e are commuted to the left (right). This is again
something that is easy to implement with algebraic manipulation . Note that any
term that will not depend on e is hence due to disconnected diagrams. Putting
things together we find

3 2
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<0 1
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AA A

V

2,01

r

4
.)H' =H(j) +H(2' ) +H(3)+H(4) +H(5) +

	

0const.Xg

	

(3.37)

where H( .13) (H(41 ) ) will contain the disconnected contributions to be added to the
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one-loop (two-loop) terms, whereas H( S) gives the mixed terms in the effective
hamiltonian .

41	21k221
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1 ~J

The coefficients ßi are given in table 2. The following unitary transformation

.f2(c, e) = exp(ig 2(0(c, e)),

	

w(c, e) = '-;el
( ca, ea) ,

renormalization of the coupling constant

hamiltonian becomes finite and of the form

Hill. = f2H If2t _ ,>l l + ßl2 ,

(3 .39)

(5 + 3d)
e' 8dk3

(3 .4l)

will implement the necessary field renormalization. Together with the one-loop
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where g(L) is the L-dependent renormalized coupling constant, the effective
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TABLE 2
The coefficients as occurring in the effective hamiltonians, eqs . (3.47) and (3.43) . The coefficients

are to be summed over all non-zero momenta, where k E (2 WZ)3 and k --- I k 1 . When the
momentum sums are divergent in three dimensions we give the coefficients

as a function of d . The coefficients y, were given in table 1

a j(d)

J6 _5

1 36
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with V,(c) as in eq. (2.1) and*

(H( ' ) + H() + 2-y,01 g2C2

	

3 g(2)
(Fk-

1)2
VAO L

	

1

	

4

	

0 )= 2L

Whereas _;V2 =H( ' ) are the 0(g4) mixed terms which were ignored in the past .5
The coefficients a i, Pi and yi are given in table 2. As usual we assume that the
bare coupling constant in V, and H( ' ) can be replaced by the renormalized5
coupling constant .

i 26(Finally we can use the unitary transformation Mc, e) = exp( g o
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to transform the effective hamiltonian H' toR
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QT +fi' = hH' ^'
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where _7~
1 is Up to 0(g4) precisely the effective hamiltonian we have used in the

past [61, whereas _,v2 is now given by

4

H
go 2

(5) + '-

	

(1)2L

2 2g0c

	

k',	(3 .45)267r L

(3.46)

(3 .48)

The operators

	

and .1~2 are of the same form as _;~V, and '~'2, but with different
coefficients ai and 8 i , which are also given in table 2 . Note that the coefficients ai
now correspond to those of the background field calculation in the non-local gauge
(since this was the reason for introducing h). It should be noted that the
coefficients a3 , a4 and a5 can be entirely transformed away by a unitary transfor-
mation similar to f2, however, at the expense of changing -~~2 . Conversely, _,~V'2
cannot be completely transformed away. One should thus keep in mind that it is
not a priori obvious that

	

will have a negligible influence on the spectrum . It is
outside the scope of this paper to investigate this in further detail . What we did
investigate though, is that taking the coefficients belonging to

	

rather than
changed the results for the mass ratios by at most I%.

It is reassuring that the intuition expressed in ref . [12] concerning the two-loop
effective potential (by the statement that all "non-local" terms, i.e . terms depend-
ing only on a single momentum sum, should cancel) is confirmed to the order we

The diird term conics form ig
(
2yjo), (.21 . We tjjtjS See t11,11 the terms between square brukets in eq .

(3.36) for 11( 'j) exactly cancel .
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investigated . We will thus assume that the two-loop effective potential restricted to
abelian zero-momentum fields ca = SQ3r,, V,"(P) = VI(c) is to all orders still given
by (see eq. (2.26), ref. [6])

9 2L

	

a 2	a 2
V2 h( P)

	

64

	

ar
_

	

?
v'ab(CYP)

aY?
VI b( 8P)

a*p,a,PE(0, +)

	

!

4. Lattice perturbation theory at one loop

(3 .49)

We start with Wilson's action [15] for a lattice of size No x Nl x N2 x N3 with
periodic boundary conditions in the limit No -+ oo. The analysis will therefore not
include finite temperature corrections.

1
S =z

	

F Tr(1 - U, .a+~.Ux+~, ..+~+~Ur+v.x+~+vUI x+i,

	

(4.1)
90 p.,V.x

We split the link variables into zero and non-zero-momentum contributions as
follows

Ux._~+N. = U,( ( )(t)U~.(x)=exp(icL(t)/NL)exp(igoq~(x)), (4.2)

Pq

	

=

	

1

	

Eq ( x) = 0 .

	

(4.3)
NI 1V, N3 x

Lattice background field calculations were first performed in ref. [161, where the
analogous decomposition

Ux. .,.+~ = UI (x)U1, (t) = exp(igo~q1,(x))exp(ic,,(t)/N,,),

	

(4.4)

was used . The relation between the two formulations is expressed through

q~,( x ) - U~°>( t ) ~q~,( x ) U~°>( t ) .

	

(4 .5)

Note that this transformation preserves the zero-momentum projection (Pq, = 0).
We can introduce the covariant derivatives

D,(K")(x) = e'~'(x+A) - U,(o)(t)'r(x)U,(o)(t),

	

(4.6)

l)~(

	

)(x) ® U,~ 11 l(t)f (x+ ,)U "'(t)" -~~'(x),	( 4.7)
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D'(e<-,, )(x) = r(x -	) - U1o>(t) -(x)U,1o1(t)t,

	

(4.8)

D ((-- )(x) = Ü,to)(t)t-`'(x -î~)U(o'(t) -~
.
(x)

	

(4.9)

The background gauge fixing is given by

X = (1 - P)

	

Dm~ (q,,,)(x),

	

(4 .10)

One can now work out the variation of X (for X one has similar results) under an
infinitesimal gauge transformation

Üi. , + ;j -* exp( -iA(x))U,, x +A exp(iA(x +Iû)) .

	

(4.12)

After some algebra eq. (4.12) is seen to imply [17,18,23]
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,(x) = {1 - exp( - igoadq�(x))) -l igo~adq�(x)D�(A)(x) +igoadq..(x)(A(x)),

which yields for the Faddeev-Popov determinant detG 1)
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+(D~ + 1)ig~~adq~(x)P(D, +ig~~adgiL(x)(1 +'-;D)))( +O(g~ig3) .

	

(4.14)

This result will be used in sect . 6, but for one-loop computations one can take as
usual

.,1 =

	

ISO

	

DIt, Dm .

	

(4.15)

It is tedious, but straightforward to expand the action in the non-zero momentum
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S=So+S2+90S3+90S4+®(gôgs),

where

So equals the tree-level contribution to the effective action

.
We

introduce (c,,,(t + v) --= c,,,,(t + 8, 0), co = 0)

S,,v(

c( t)) - e-ic,,(t+v)/Nj, e-ic,

.(')IN,,

eic-(t)INm eic,lt(4

.1®)

and

decompose	

'-,

(1 - S,,a,) in its hermitian and antihermitian components,

2(1

- SILv) = Ste

�

+ Ste

� ,
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(4.16)

Furthermore,

we obtain for S

2

(the piece of the action quadratic in the non-zero
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= 2 -

(S,.,

«~~,) = Tr(l - S

S£"-

-(SILIV-Smv),

(4.19)

The

tree-level action So is now given by

so-

NiN~N3 E S1+11"(00) 1

(4.20)
90

Et, v, t

which

takes a simple form in SUM when using

a
eickINA-

rk Ck~a rk

=

er k /(2 N,(

.)

= Cos ( 2 +

Nk

) I sin ( ? )

(4 .21)
rk

Nk

and

employing the coordinates on the unit three-sphere

rk

c~ rk

zk

a

=

sin ( 4

=
2N

, cos

.
r

Zk

2N (4.22)
k

k k

In

terms of these parametrizations we find

sin,

2(ri/2Ni)sin2(r,/2N,)

sü

+

(c)

= 2

2

2 Fi

;

,

(4 .23)
ri

rj

4
S(C)

=Scr(c) = (zi(t + 1) -zA (t))2

. (4.24)
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-!

	

F, Tr

	

2 jut

	

- Djuq�(
X»2

2

	

~I 1 - 1-S+,(c(t»1(D�q�(x)
ii, l', X

-ism,

	

q,.(x)] - [q,,(x + P), D,,q,,(x)])2 ,(c(t))Qqjx+j1),D

provided the covariant derivative acting on a vector in this equation is modified to

qjx) = q,,(x + A^) - U(")

	

(4.26)V

	

7 (X)U(())(t +t + ^ Y .9"

	

A

(Note that the difference with eq. (4.6) only occurs for v =0. In the decomposition
of eq. (4.4), this modification would not be required [161, but apart from having a
slightly more compact notation, the two methods, although differing at intermedi-
ate stages, should give the same results for the effective action .)
We can rewrite eq. (4.25) in momentum language if we introduce the momentum

ei-enstates*

(k)( X ) =q�

,V, - 1

	

4

E

	

exp i Y, k.x. q,,(k),
k,, = 2-.. ii,.IN. . . Pi, . = 0

	

À =0

Restricting now to time-independent background fields, one has

(k))(

	

ik,,

	

(k)( X )Dg(q l , x)=fe -exp(-iadc,1N,)jq,,

(k))( X )

	

-ik,,

	

(k)( X )D~~'L (q1 ,

	

fe

	

-exp(i ad c,1N L )jq,,

	

(4.29)

We therefore find

S2 + F, Tr( )V2) = FTr(q,,( -k)1-11,_,jc,k)qjk)),

	

(4.30)
x

	

k

From now on k will denote a four-vector, rather than the length of' the three-vector k.

(4.25)

(4.27)

which are also eigenfunctions of the shift operator

(k)( X + ~)

	

ik,,

	

(k)( X )q1,

	

=e

	

q~

	

(4.28)
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Zl,,,,(c, k)

	

D,_&; DA + [ D,,, D,; 1 + (4.31)A

	

,,(c, k) +

	

k) j~

Z +.,

	

(c, k)lit

	

2 gîFd Sî+LA DA' DA +

	

Di, Dm

?-' -

	

F, lexp(ik

	

+i ad cjNA ) ad S,-,, + ad S,,-,A exp( -ik,. , ,,,,(c, k) = -j4

	

A

	

i ad cINA )l
A

+ -1 eik-ad S- e -ik - - -ID* ad S-2

	

118,

	

,, D .	(4 .32)4

	

R .

	

$1 1

	

il

Like in the continuum [61 we can now compute the effective potential for a
time-independent background field. In lattice units one has*

VAC) =

Here we have used

lim -
IV,,, -

	

No

I

	

det . //( c)

rde_t _(c

-ds
-2s

-f - e

	

IJ2s)

	

trTr[exp(-s7/ -"PI(c, k»i2
0 S

	

k-0

*The trace w.r.t . the space-time indices is denoted by tr.

709

-Tr[exp(-s.,//"P1(c,k))jj . (4.33)

71 jc, k) = 4 sin2(k012)3111, + 7/'")(c, k),

	

11(c, k) = 4 sin2(kO12) +1,1( Pl(c. k) .ILI '

(4.34)

where the spatial parts 11,,(,,P)(c, k) and , //")(c, k) only depend on the spatial
momenta. Furthermore, this allows one to explicitly perform the sum over the
momenta k o ,

N( ,
lim

	

exp( - 4s sin 2( 7-,n O INO )) = e-2s IO (2s),

	

(4.35)
N(, -, - No

where 1jz) are the modified spherical Bessel functions, which are the Fourier
coefficients for the function ez"s". This implies the more general result (which will
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be of use further on)

N

f,(t, N) =
N

F, exp(

	

4s sin2( 7r(n + t)IN» = e-2s 1: INIkj(s)e -2-,rikt

11-

	

k EE 47-

which is easily derived using Poisson resummation.
It is instructive to first evaluate V,(O for abelian background fields, for which

S' and S- vanish and //'('P)

	

Furthermore, . .//('PI has for c i' = ri

	

the
JA

	

50

eigenvalues

Therefore

3

	

ki + arN,-
2wa(r, k)

	

4sin 2	a = 0, ± 1

	

(4.37)

-ds

	

- 2s

	

3

	

27rn, + arj

	

.

	

(4.38)- e

	

10(2

	

-4s 1:

	

-0 S

	

2N.
s) Y: exp

	

sin"
et ~ n

	

j=1

The s integration can be computed exactly. Again, for later use, we consider the
more general integral

-ds

	

ds
F= -f -e-"O-f

	

:~ fO

	

S

	

INjkj(2s)

	

(4 .39)~,(O, N)

	

e
0 S

	

k 'E

and use that the Laplace transform of I,,(z) is also a simple function

More explicitly one has

dse-s c,,h(.0) I,,( S
2sinh(,O-)0

This shows that F is exactly the free energy of a harmonic oscillator with
frequency 0 in a heat bath of inverse temperature N. The frequency 0 is related
to w by

w = 2sinh(12/2) .

	

(4.41)

i9F

	

dF

	

oc

	

-(1 +'W
2 12)s- = coshffl/2) - = sinhffl) E

	

dse

	

Nikl( S)dn

	

d(O

	

f
k GE Z

	

()

1 a

	

00

-
Nlklfl = _

	

-N(n + 1/2)fle

	

--In

	

1: e
k E=- Z

	

Nd12

	

~ n ~ 0

(4 .36)

(4 .40)

(4.42)
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Fig. 2. The effecti%e potential N(V,"'(r; N) +4 asinh(VEE,-sin_2(r,/2i_N_) )), see eq. (4.43). along the r,
axis for N = 4 (dashed line). N = 6 (dashed-dotted line) and N

	

(solid line). where the latter is
equivalent to the continuum .

Therefore, in lattice units (up to an irrelevant additive constant) we find

~'V'- 1

	

1

	

1

	

3

	

2

	

27rn, -
V,' e(r) = 4

	

Y,

	

asinh

	

Y, sin

	

2Njîvj= l
(4.43)

whose Taylor expansion around r =- 0 will give the coefficients Yj as a function of
N1 , k, and A~., . In fig. 2 we have plotted ths one-loop effective potential (including
the zero-mode contribution 4asinhIrEisin2( rj12Nj ))) for abelian background
fields and for cubic lattices with N= 4, 6 and oc, where N= oc corresponds to the
continuum result [6].
To determine the coefficients ai U * 1) we write

'71 -(sp)( C,111 ,

	

k) = 3()(k)8,gg, + A71��(c, k) ,

	

.7,1(P)( c, k ) = So(k) + A, l« c, k) ,

3

8jk) = Y, 4sin2(kil2),

	

(4.44)
i=1

where A11,*,jc, k) and A, .11(c, k) vanish for c = 0. We can now expand the
exponentials in eq. (4.33) in powers of c and express the s integrations in terms of
the coefficients

5jk) =

	

X
dss"- I e-(2 +A(1(k))s Ij2s) = -2 ( -dldx)"-'(x +X2/4)

- 1/-)

fo
	2

	

1x=b, )(k)'

n > 0 -	(4 .45)

We have used the algebraic programme FORM [131, independently from calcula-
tions by hand, to obtain the results of table 3, which expresses the coefficients ai
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and yj as finite lattice momentum sums. For illustration we have only presented
the results for a cubic spatial lattice, where N, = N, = A~j = N. For asymmetric
lattices the analogous coefficients can be obtained on request from the author in
the form of a subroutine (written in C), which evaluates these coefficients .

Finaliv we discuss how one computes the coefficient a,. Like in the continuum
[61, this is most easily done by a standard one-loop background field calculation
[ 191 for the term quadratic in c. In this case the external c lines will carry a
momentum p,,. Apart from the diagrams that contribute in the continuum, there
are now additional diagrams due to terms that would vanish in the naive contin-
uum limit. The best way to go about is to expand S, up to the second order in c
(for a time-dependent background field). Using eq. (4.25) with*

and adding Ex
x, A, v and j is

S'+ 40 = r((a,'

St-Ij = 2id,,c.jt)1N

S -Rjjc-(i))2Nj-4 J

S'-' = O(C 2),

r(O to the action . a careful analysis will give (the summation over
plicit)

Cj(t +
jx))21 + Trj2it),qjx) I

	

qjx)

(aj + 1)q,.(x)ad i
CM + A)

q,.( x)
Nj

	

(2)

+i(2 + d,»q,( x)

	

doci(t)

	

(2 +dj )q,)( x)
1 Nj

	

1 (3)

The lattice derivative is denoted by d., with

	

W

	

U+

	

W.

aoCj( t

	

C70C~i ( t
+ Tr

(
iq(,(x)

	

Nj

	

,
aq(,(x)

	

+iaoqj(x)

	

Nj

	

q,( x)

d0c(t)

	

+

	

Cj(t +
+ Tr

	

M

	

qo (

	

i ) - do qj ( X),

	

Nj

	

,
qo(X

I aoCja(t) 2

	

X))2

8

	

Nj

	

(,9() qj(x) - o9jqo(

	

M'

	

(4.46)

The indices in the brackets denote the various vertices occurring in fig. 3 (this
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TABLE 3
The coefficients for Che lattice in the non-local gauge with a time-independent background field .
The coefficients are to be summed over all non-zero lattice momenta (E -"~

	

excluding
We used the shorthand notation d, = SQ k s, = sin(k,) and c, =

~sZd,/9

y,6(N)

	

j8(ss-,) :!(3C3dj - 2s
,

	

iidj + 2cIC2C3d

	

12s2,c2c-;dIN-3

on- I gauge lattice coe

figure also includes the obvious ghost diagrams)

s"St)

F,Tr cj(t + 1)(cj (t + 1) - cj(t)) = -1 FTr(cj(t +
1) _

Cj

(t))2

1

	

2
t

	

) I

/5YV
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We leave it as an exercise to find the appropriate expressions from eq. (4.46) for
_L(,ROCia)2'these vertices . We now wish to extract the term proportional to 2

	

which
will give us a(,') (in a cubic volume this is independent of 0. Note that the last
diagram of fig. 3 is already of this form, by using

or IM j(16djI +d,14)d.413 + 4d,- 6(2+ de,)d~,)s2
.
-d,(3s2 4(1

- (I + 2dgdj/8 +cj(2dj - dtij +d,dr',l

a-AN) -4[dg(c, + d,,/8)/2 +d,(l + c j )(l +c,)/2 - d,s Z/2 -
-d,c lc,12 + 2d,,s2,c,)N- "

a~-4(N) fe l(c, + 4)d,/16 - (I + 2c t )s2d jJ2 + (I + e t, +

- ( 1 + eu + c ., - 4e lc, - 2sî)s l,d t/3 - ,S

a4M 1(22c, + 8ci - -I 3 + 6cjcZ - c, + 9c_ )d,124 (18

- -I1sZc,(s :! + + (6 25s - 6c 6c, -.;I- 12c- I 9s :2!)d,-/3 12'+ 3sz2 , c,

+(I +c, + c,)c ld..;12 +32su~s2d,115) IV-

az,(N) (3dc,c,18 - (cgc,c:; - (I +c,)(I + c,)(I + 4c.-,J)d .,12 - 4(1

+4(sls,)
Z

-c -5 64(s Is, s~-,) d,115 - 2(srs d'j iv

y l(N) I- j4dsf - 2dIcI IN-

y:!(N) -Idc, /6 - 4ds213 +d,c2 - 4ds2c, + 4,d,s"1'31N- .

y3ff) -21d.,c1c, - 2d:;( sic:! + s;c I ) + 4d.,(s Is:! )2)N

y4M jci'd:!/6 - 5c,sfd;13+ 8s!,d,/9 +ci~d .,,13 + 4s'[1cjd.,13

2
-8s~,d,145 - 2(c -js I ) d. ; 8s2,d,/45 + qd,,11801N-

y5M jc I cd,16 +c-,(c2 - 5s2l3)d:; + 2s2d,(4s213 -qfc, + 2c,))

+4s,2c-,d,;(2s2 5-2 + 1s213) 28sfs2d,13)N-
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Fig

	

I_ I The o, ne-loop Feynrnan diagrams that contribute to a"I(N), eq . (4.46).

and has no external momentum flowing through the diagram. Also the third and
fourth diagram in fig . 3 are of the tadpole type, but their result is proportional to
r"I c,M'2 and hence they do not contribute to a, The remaining diagrams depend
more non-trivially on the external momentum and we extract the term propor-
tonal to (doc i'12 by an expansion in the external momentum p,, . This is most easily
done by writing c1t) = j2^) sin(P.0c", expanding the result in powers of
P a 1sin(p,,/2), since - 2(c,92. As an illustration, we will only exhibit
the contribution to a4," from the first two diagrams, (which is the only case where
one need,; to expand a propagator)

1
=3

	

y

	

Y, sin 2(k i )14'62(k) - 6(2 +,&(,(k»,63(k)
k*0

-4

	

sin2(k,)
Ek (4sin2((k,,+po )/2)+Q(k))(4sin 2(k l,/2)+Sll(k))

+ :1511(k)(4 + Sjk)) 54(k)) .3

	

(4A7)

The final result for a , in the case of a cubic lattice can be found in table 3.
The scaling limit corresponds to taking N to infinity and simultaneously go to

zero, such that g
~)
2
+ a, .2 remains finite . To be more precise one can show that

a L2(N) diverges as -(11/127,- 2AM Or large N, in accordance with the (univer-
sal) one-loop beta function . If we define

a R

	

I I
1,2(N) 7--- a,, 2 (N) +

12 .2 ln(NA L/A ms ),

	

(M)

with [16,201 ln(A

	

-027r 2/11) X 0. 1866792, a R
L/-" l MS) ~

	

L2(N) has a finite scaling
limit which coincides to a high accuracy with the renormalized values in the



continuum (see eq. (3.44))

L,ff(c(t)) =
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2 -15

lim 0,(N) = lima1,2(d)

	

lim a, .2(d) -
d-3 d-31

Equivalently, comparing the lattice and continuum results
checks on the relation between the lattice and continuum (for
ization with minimal subtraction) scale parameters [16,201. We re
first reference in [41 and sect . 8 for the behaviour of the coefficients
of N, especially demonstrating that for N the coefficients ap
continuum values as N-2.

S. From transfer matrix to hamlat

e have computed in the previous section the effective action (using a
independent background field to compute the effective potential to one-
order) and found

go-
2 + a4"(N))

(4.49)

4
X

	

(Z~,. (t + 1) Z ~,(t))2 +

	

V(C(
t
+ 1)) + V (C(t) )] .

	

(5 .1)
1

	

2 t

	

I
il= I

where zi" are the stereographic coordinates of eq. (4.22). However, time is still
discrete . The aim of this section is to show how one computes the effective
hamiltonian V in terms of the transfer matrix -;- defined by C V is a normaliza-
tion constant)

*(C ; t + 1) = 741(c ; t) = ~ Vf dc'exp[ -L,,ff(c(t + 1) = c, c(t) = c')JOW; 0 -

(5.2)

All we basically need to do is to find an operator representation of .7 and take its
logarithm. The spectrum of the hamiltonian V thus obtained is precisely what will
be measured in a Monte Carlo analysis using time-time correlation functions on a
lattice that (for all practical purposes) extends to infinity in the time direction [3].

It is instructive, as usual, to first consider a simple harmonic oscillator

L(t) = -Itn(x(t +
1) _ X(t) )2 + _LM(j)2( X2( t + 1) +X2(t)) .

	

(5.3)
2

	

4
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Introducing the position and momentum eigenstates Jx), resp . 1p), such that
( x I p > = e'Px, one finds

f dxf dx J,`jx'><xj exp[ - -1m(x' _X)2+ ~Ini( X 2 +XP2)1)10> .

	

(5.4)2

	

4

_LM(X , _X)2 =f dpexp~-
P

' )<X'jP>(PjX>'

	

(5.5)eXPj - 2

	

2m

xr2T,-m

	

(5.6)

we find (X^ and P are the position and momentum operators)

P1

	

2.j 2

	

1

	

2.~2exp(- 4M(d

	

)exp

	

21n )CXP(- 4M0j - ) = exp(

	

(5.7)

and one evaluates // using the Cambell-Baker-Hausdorff (CBH) formula. It
should not come as a surprise that we can compute /,/- exactly for the harmonic
oscillator.

sinh(12)m+ jMf22_i2'

	

M=

	

(o = 2 sinh(fl/2) .

	

(5 .8)2

	

f2
I

That

	

is again harmonic can be seen either by using the CBH formula or the fact
that, as we have shown in sect . 4 (see eq. (4.42)), the partition function Z =
e- NF = TrC~7 v ) is that of a harmonic oscillator with frequency fl . One can then
compute M from the identity

I

	

a ln(Z)
M - 1 = M<0 1 .~C 210) =

	

liM

	

_
N-oc

	

MW

	

a 0)

As long as we are only interested in the spectrum of the transfer matrix and not
in the eigenfunctions, we could equally well have defined

p

	

2112
p

exp(

	

exp

	

- exp(- IMW C )exp
-

	(5 .9)
~- 4m j

	

2

	

~

	

4m ~'

since TrC~7&) = TrC7 iNo
). For the harmonic oscillator

	

is related to ./,/' by the
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Mr = 2 tanh(f2/2)m-
f2 9 (5 .10)

and .-P" is equivalent to _,V by a unitary transformation . Note that in the
continuum limit

-2Plim a - ,;71'(a - 'm, aw) = lim a'

	

-

	

I

	

2 .i 2 .
a-0

	

a-0

	

a `m, aw) =
2m

+ imw

	

(5.11)

It is quite straightforward to generalize the construction of the hamiltonian to

We find

L

	

(t)=_!EMi(Xp+ I )_Xi(t))2+ .I[V(X(t+l))+V(X(t))]- (5 .12)eff 2

	

2

2
-In exp(--1,V(x»exp

	

Pi

	

exp( - -! V

	

(5.13)E 2m

	

2 (X»
-i

	

i

-In exp( - 'VI (c))exp

	

exp(- 'V,(c))latt =

	

-51

	

2

	

2
i Mi )

	

~

4N 2j a

	

2
'JU) = -

	

in 2 ~

	

rj	o9

	

L(j)
3

	

2

	

-S

	

- -+

	

2(1.sin (r,12Nj ) drj	2Nj drj

	

sin

	

jl2Nj)

r4 =
"zil' = 1, our effective lagrangian (5.1) is of theApart from the constraint _ I zi

above form. One easily convinces oneself that this constraint, supplemented with
the constraint that the radial component of the momentum vanishes, does not
interfere with the construction of the transfer matrix in an operator formulation .
All we have to do is to replace p2 in eq . (5.13) with the laplacian A3 on S3, such
that

-2m =4N,N

	

3(g

	

+ a(i)(N)) .

	

(5 .14)2 'V~

Wavefunctions are normalized w.r .t . the L2 norm on (S3)3, which we conveniently
transform by a stereographic projection to the L2 norm on R). Thus, rescaling the
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wavefunctions with a factor

transforms A~," to

then

Explicitly to OW)

J(C) = HMO,
i = I

a 2
HI (A, B) = 2(A + B) + - [ A - B, [ A, B]j

6

JAC) -
sin(rj/(2Nj))

r,1(2N.)I

(5 .15)

a2

	

L2

	

3
-'=4N2

	

__+ ( ji ( C ) -2 _ 1 ) . (i)

	

(5 .16)J( C ) A~Ii)j( C )

	

i
a2

	

'709C

	

ri, 4N2

The continuum limit is obtained by writing L i = aNi , _~V= a - 1,7VIan and taking
the scaling limit a --> 0, gt) -), 0, Ni ---> w, such that Li and mi remain finite . This
implies that the CBH formula for eq. (5.14) will give an expansion in a - N', of
the form

-a-'Inle -aA e- 2aB .-aA
) - (5 .17)

Since we will consider N as small as 4, we will expand -/,/- to fourth order in a .
Furthermore, we use the freedom to choose unitary transformations to bring -//' to
its simplest possible form . Define

F(A, B) = -a - ' Infe -aA e- aB
) 1

	

(5 .18)

// = -a - ' Infe -aF(A, B le -a F(B, A)) = H I (A, B) + H,(A, B),

Hl ( A, B) =Hl( B, A),

	

H,(A, B) = -H,(B, A) .

	

(5 .19)

a4

360
QA,[B,[BjA,B]j]j - [B,[A,[AjA,Bflfl)

a4

	

3-(ad (A - B) + 8ad(A - B)ad A ad B
360

+30ad[A, B]ad(A + B))[ A, B],

H2(A, B)

	

a

	

[A +B,[A,B]] +
a

	

(ad3(A + B) + ad(A + B)ad A ad B2

	

24

+ad[ A, B ]ad( A - B))[ A, B ] .	( 5.20)



On general grounds we know that there exists a unitary transformation U = exp(X)
such that

(A, B

	

-X(A,B)H j(A, B) + H2(A, B) = ex

	

~(H j( A, B) - H2( A, B»e

To lowest order one easily finds X(A, B) = (a 212)[A, B]. We use it to define the
symmetric function
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H~;( A, B) == e-X(A, B)12(H l( A, B) + H2( A, B»eX(A, B)12

(I - -I ad2 X(A, B))HI(A, B) + O(a') .

	

(5.23)8

Finally we wish to minimize the presence of terms that mix coordinates and
momenta by applying a unitary transformation exp(Y)

a2

	

a4

	

a4
Y(A, B) = - -[A, BI + - [ B, [B, [A, B]j 1

+
-[B, [A, [A, BI]],

12 720

	

240

which transforms the effective hamiltonian to

a 2

	

a4
2(A + B) + -[A, [ A, B]l - - [ A, [ A, [ B, [ A, B]III

3

	

15

a

	

a

	

[ A, [ A, [ A, [A, BI] 11-[[ A, B], [ B, [ A, B]j 1
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360

(5 .24)

A VI(C), B=

	

(5.25)

The last two terms will vanish and the fourth term that mixes coordinates and
momenta cannot be entirely transformed away. As we have not included similar

X(A, B) = -X*(A, B) = -X(B, A) . (5 .21)

This X is therefore determined implicitly by the equation

ad X( A, B)
H2( A, B) = tanh HI( A, B) . (5 .22)

2
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terms in the effective lagrangian, we will also here ignore them. Thus in lattice
units one finds
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which was expanded to eighth order in c. This modifies the coefficients ai and -yj
and furthermore introduces extra ternis, which for the cubic case are of the form
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The coefficients including the transformation from the transfer matrix to the
effective hamiltonian will for obvious reasons not be displayed here, but can be
obtained on request from the author in the form of a C-programme subroutine.
We will not reproduce here the effect of the lattice artifacts on the spectrum

and refer the reader to ref. [41 where these issues were adequately discussed. We
used the connection between the bare and renormalized coupling constant implied
by the relation between AL and Ams [16,201 to add the two-loop continuum
effective potential of eq. (3 .49) to V, before using eq. (5.26), which should thus
include the bulk of the two-loop correction. We expect the overall uncertainty due
to ignoring the O(g4) mixed coordinate and momentum terms and using the
continuum rather than lattice two-loop correction to be of the order of I to 2
percent .

6. Some two-loop lattice results
In this section we will set up lattice perturbation theory in an abelian time-inde-

pendent zero-momentum background to two-loop order for a cubic spatial lattice .
Here we will prefer the decomposition of eq . (4.4),

	

= 0, x)U,,( () ). Note thatU4(
now U,(() ) is time independent and [IJ,(() ), U,!() )] = 0. The Wilson action can therefore



be written as

S =
I
T2
0
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We will introduce three different parametrizations for U,,(x)
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The first is most convenient from the point of gauge fixing. The second is related
to the stereographic coordinates of SU(2) in terms of which the Haar measure is
most easily expressed

d -3a

	

( Ir ~
3 11

	

11
U - UtAX

	

=
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I + q,~L(

X)2/4)
3

.

	

(6.3)

and the third coordinate choice is the most convenient for expanding the action to
fourth order in q, required for a two-loop analysis . The different parametrizations
are related as follows

qtL
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go Q�(X) = qm(x)
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We will, however, also consider arbitrary u which is obtained from the results with
u = - -1 by the rescaling6

1 + ( U + .I)g2QtL(X)2 +

	

(6 .5)QII(X) ---> QM(X)(

	

6

	

0

The purpose of having arbitrary u is to have a consistency check. For the same
reason we generalize the gauge-fixing function to

(6.6)
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Introducing

RI', (x) = U,«»Q,(x + v^)U�«»t = (D� + 1)Q,(x),

	

(6.7)
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where Sm(u, w) is the contribution due to the Haar measure [201 and the jacobian
associated to changing d'q into d'Q. The value of w will in general be zero, but
for the special case that we have imposed the constraint P4', = 0, one will pick up
an additional jacobian factor

2
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+ 5tig ()

	

X)2) +f 3 F, Tr(Q�(

	

(6.11)
9 , x

	

j

w = -- 5u/2 N',

	

(N= 0) -



P. ran Baal / Gauge theories in finite volumes

	

223

There will be two more contributions, namely
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F, Trj(j) Q,,(X) _&Q

	

X) )j) Ql,(X)3) ,
6

	

0 6

	

11

	

i A( A

2

	

2 ^
Sgh( 1'

	

Tr~j(x) �lz^"'ip(x) + g. tij(x),Öt (Q,(x) D.4i(x),g
,u, x

JU, V, X

(6.13)
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where ..,// was defined in eq. (4.14) and the term proportional to r follows from

3( X) =4M2( X) ,b~ 14 ( X) +4MqI,

	

(6.15)

The ghost and vector three-point vertices are still quite manageable, which we
will specify for arbitrary abelian background fields
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Ca = rtA30 - 31A);L

As in the continuum, we can introduce Q"(k), a E=-

	

1, 0, 11 (see eq. (3-30)), whichA
are eigenstates for the covariant derivatives (k is a lattice momentum)
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One easily finds the propagators to be
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and the ghost three-point vertex is found to be

(Each n-point function will also carry a factor (NON')"I' .)
The general usefulness of this result is that when the background field and

P are put to zero . eqs. (6.18)-(6.20) give the Feynman rules for the LorentzZ .
gauge (see also ref. [201). For a much more complete and systematic method
for setting up lattice perturbation theory the reader is advised to consult ref. [18] .
If one wishes one can replace (a,,8, y, c,,,,_Y and 5,,, ,3 , o ) by (a, b, c, iEab, and Sad
to convert it to a more conventional formulation . In these conventions the
Feynman rules are furthermore valid in the presence of a magnetic field generated
by twisted boundary conditions [8,12,211, provided one defines k(a) = k +
A(,a)(m)IN,L, with Vo)(m) = 0 and Xj")(m) as defined in eq. (60 of ref. [12] (see also
A o

ref. [181) . This might be helpful if one wishes to also include lattice artifacts in the
spectrum calculations in the presence of twisted boundary conditions [21,221 . At
one loop these lattice artifacts have recently been included [301.
To compute the two-loop effective potential for a time-independent abelian

background field (or the two-loop vacuum energy) we have to sum the diagrams of
fig. I (plus a possible non-local term associated to ghosts when we impose the
constraint P4 = 0). The full expression for the four-point vertex is quite compli-
cated, but fortunately we do not really need it since the contribution of the
four-point vertex to V, is given by

where S(") stands for terms proportional to Q LW" . Before computing this, we first
give the contribution to V2 due to the three-point vertices (the first two diagrams
in fig . 1)
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One easily checks that this has the correct naive [23] scaling limit, by comparing
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with what we found in sect . 2. Unlike in the continuum, it seems impossible to
factorize this result in the sum of products of one-loop factors. We will still,
however, be able to evaluate the time momentum sums exactly for N,, -3~,X, due to
the remarkable formula
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(6 .23)

This result is proved most easily in the coordinate representation Q thank G.
't Hooft and J . Groeneveld for suggesting this) because the propagator is as in the
continuum exponential in t, which is implicit in eq. (4.42)
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The result of eq. (6.23) follows now trivially from
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The computation of (S(4) + S(4% can be considerably simplified by noting e.g.,gf
that terms like Tr(R"Q 3) have vanishing expectation values, and thatJA 1,
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The parameters K and E will distinguish the different situations . When we
consider the non-local background field gauge K --= 1 and othierwise it is zero . The
parameter E = I corresponds with the fact that the k = 0 mode is excluded in the
momentum sums over k. For the case of twisted boundary conditions in the
Lorentz gauge one therefore has to take E = K = 0. It is important to observe that
V2 is independent of u and v. For E = I this confirms the subtlety of eq. (6.11) .

1~13)

	

(') allows us in principle to calculate the lattice artifactCombining , and V,
contributions to the two-loop effective potential. It should be noted that in the
scaling limit N ---* oo, NV2 is supposed to remain finite, but separate terms can
diverge as N' and subtle cancellations are required . Although we did not discuss
this, the same happens for the one-loop coefficients, which are combinations of
terms that in general will diverge, but nevertheless when taken together will
reproduce the correct result for N --), oo (see table 3) . It is from the lattice
calculation that we became aware of the problems that were discussed in sect. 2.
Like in sect . 2, let us consider the difference between the non-local and Lorentz
gauge results for V2 , computed with a time-independent background field. This is
precisely the sum of the terms proportional to K appearing in eq. (6.26) . For a
vanishing background field one simply finds

N(O)

	

-3
V21

	

- V2L(O) =N

	

F, (245 1 (k) - - 2 5 1(k)) .

	

(6.27)
k*0

But, this does not vanish as 11N, which is required for eq. (5 .27) to have a finite
scaling limit. It is yet another manifestation of the fact that at two-loop order, one
is not allowed to neglect the contributions due to a "dynamical" background field.

Let us conclude this section by mentioning that in the presence of twisted
boundary conditions [121, eqs. (6.22) and (6.26) provide the complete result for the
two-loop vacuum energy, by putting E == K = 0 and (a,,B, y) E: (1, 2,31 (see the
discussion below eq. (6.20)). Using eq. (6.23) one can express this vacuum energy as
a six-dimensional sum over the spatial lattice momenta and NV2 should now have
a finite scaling limit that will coincide with the continuum value [12] .

7. iscussion
This paper is intended as the last in a series of papers that studied gauge

theories in finite volumes. See ref. [241 for a more pedagogical presentation . The
most detailed results are available for SU(2), both from the analytical and the
Monte Carlo points of view . This is an important "laboratory" for non-abelian
gauge theories, but fortunately analytic results are now also available for the more
realistic gauge group SUM [25], with results quite similar to those for SUM. Also
massless fermions have been included [26,271, which for example showed that in
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small volumes chiral symmetry is unbroken [261, as was recently confirmed in a
Monte Carlo analysis [28] .
From the theoretical point of view, the significance of the intermediate volume

calculations is that one deals with wave functionals that spread out beyond the
Gribov horizons closest to the origin in field space, which to some extent dominate
the low-lying mass spectrum . For a more thorough discussion see ref. [29], which
also discusses the case of arbitrary gauge groups in more detail . It is hoped that
our understanding in intermediate volumes, which is by now fairly complete, will
give important clues for the non-perturbative dynamics in larger volumes. Still
much work remains to be done in that direction.
The relatively simpler case of SU(2) has allowed quite a detailed analysis,

including higher-order corrections and lattice artifacts in the analytic calculations.
This has been the subject of the present paper. Of practical use will be the new
terms of the form C2a2laC2' that complete the effective hamiltonian (in a finite
cubic volume) to fourth order in the coupling constant g (where c = 0(g2/3A For
easy reference, the resulting effective hamiltonian is summarized in sect . 8,
together with the numerical values of the various coefficients.
This paper furthermore addresses a few rather technical issues. It gives the

details (in sects. 4 and 5, summarized in sect. 8) of the lattice calculations of which
the results were presented in ref. [4]. These results demonstrated that after
including the lattice effects in the analytic calculations, the agreement with the
most accurate Monte Carlo data [21 (with statistical errors as small as 2%, and
systematic errors presumably under control) was almost perfect in volumes up to
0.7 fermi. Another motivation to write this paper was to include two-loop lattice
corrections* of the type that were also included in the continuum. Sect . 6
demonstrated that such a computation can be performed in principle. However, in
the course of this analysis we became aware of an embarrassing flaw in the
background field calculations we had employed also in the continuum. It is most
apparent when comparing the non-local background field gauge we had used in
the past with the Lorentz gauge. In sect. 2 we demonstrated that at two-loop order
these two gauges give inequivalent results.
We performed the laborious, but systematic and reliable method of hamiltonian

perturbation theory [5] up to fourth order in the gauge coupling constant (sect.
3) in order to understand the origin of this problem. (The help of a powerful
algebraic manipulation programme like FORM [131 was essential to bring this
calculation to a successful end.) By comparing the hamiltonian and background
field methods, the origin of the gauge dependence in the latter arises because that
method does not consistently incorporate the dynamical (i.e . time-dependent)
nature of the background field . Although we were aware of this, we had assumed

For a much more general and systematic discussion of lattice perturbation theory the reader should
consult refs . [17,23] and in particular ref. [18].
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incorrectly that this only affected the g4C2e 2 terms (e is the momentum conjugate0
to 0. To be a little more explicit, the hamiltonian analysis receives contributions
from disconnected diagrams, since these diagrams now depend on the operators c
and e which do not mutually commute. (If they would commute, disconnected
diagrams will not contribute to the effective hamiltonian.) These so-called discon-
nected contributions are precisely of the form observed in the difference between
the Lorentz and non-local background field gauges . They are actually of quite a
simple form and it is very unfortunate (and frustrating) not to have been to modify
the background field analysis to incorporate these additional terms in a reliable
and systematic way. Nevertheless ., the hamiltonian analysis does not suffer from
these problems, and has the added advantage that also the Gribov problem was
analysed in the hamiltonian framework [6,24,291 so that the finite-volume analysis
is now on a much firmer footing, giving additional support for the reliability of the
comparison bet,%vcen the analytic and Monte Carlo results [4]. Due to the essen-
tiallNy non-perturbative nature of the dynamics involved, we believe that it has been
worthwhile the effort .

e most important conclusion of this paper is that the effective hamiltonian we
have used in the past (apart from a unitary transformation that includes a
necessary field renormalization) is confirmed by the hamiltonian analysis. For
two-loops it has been a fortunate intuition concerning the absence of "non-local"
contributions [121 that (unknowingly) led us to the correct result . For the one-loop

9,') terms it is because we had neglected in the past terms of the form g4C 2e20
(,c is the zero-momentum component of the gauge field and e its conjugate
momentum), that allowed us to find a unitary transformation which brings the
effective hamiltonian to the form we previously [61 employed, but furthermore it
gives (see sect. 8) the precise form of these neglected terms (we have good reasons
to believe that their influence on the mass ratios is not larger than one percent) .

P. ran Baal / Gauge theoriés in finite volumes

8. Summary

This section will summarise the results for the full continuum effective hamilto-
nian (eq. (3.47)) and lattice effective lagrangian (eq. MID for pure SUM gauge
theory in a finite cubic volume. It will also provide the numerical values of the
various coefficients and review the appropriate choice of the boundary conditions
(in configuration space) for the wavefunctions . The effective hamiltonian is ex-
pressed in terms of the coordinates c', where i = (1, 2,3) is the spatial index
(co = 0) and a = 11, 2,3) is the SUM-colour index. These coordinates are related
to the zero-momentum gauge fields through

Aa( X ) =CaIL .

	

(8.1)i

	

i
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The following two composite fields will occur
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which represent the field strength and the gauge-invariant "radial" coordinate .
The latter will play a crucial role in specifying the boundary conditions. For
dimensional reasons the effective hamiltonian is proportional to 11L, it wi
furthermore depend on L through the renormalized coupling constant (g(L)) at
the scale u = IIL . To one-loop order one has (for small L)

11 ln(A msL)
(8.3)g(L)2

	

127r2

In practice the perturbative expansion of g(L) is known to be reasonable only for
unreasonably small volumes. One expresses the masses and the size of the finite
volume in dimensionless quantities, like mass ratios and the parameter z =mL. In
this way, the explicit dependence of g on L is irrelevant . This mode of presenting
the physical quantities has turned out to
the effective hamiltonian (eq. (3.47)).

extremely fruitful [3,61-. We now give

a2
aC~Ci I , dChRCb:1 ; ~

a2
aC~ _ß7 1:
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aCja,aCjb
i*j

(8.4)

We have organized the terms according to the importance of their contributions .
The first line gives (when ignoring aL 2) the lowest-order effective hamiltonian (eq.
0.1)), whose energy eigenvalues are 0( g2/1 ), as can be seen by rescaling c with
92/3. Thus, in a perturbative expansion C = 0( g2/3 ). The second line includes the
('vacuum-valley" effective potential (i .e . the part that does not vanish on the set of
abelian configurations) . These two lines are sufficient to obtain the mass ratios to
an accuracy of better than 5% . The third line gives terms of 0(g') in the effective
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TABLE 4
The numerical values for the coefficients aj , 13i and y, as occurring in the effective hamiltonian

of eq. (8.4). The square brackets indicate that these terms are of higher order than O(g 4).

potential, hat vanish along the vacuum valley. The remaining terms (the last three
lines) have been computed in the present paper. Taken together, this is up to
()(g4) the complete effective hamiltonian. In table 4 we give the numerical values
of the various coefficients*. Where numbers are quoted within square brackets,
they are of higher order than O(g4) and were not checked with hamiltonian
perturbation theory. Also, it is maybe worthwhile pointing out that we have
applied a unitary transformation to the effective hamiltonian as derived from
hamiltonian perturbation theory, such that for 8i = 0 the result coincides with
those based on a background field analysis [6]. This is allowed as long as we are
only interested in the spectrum of the theory.
To present the lattice effective hamiltonian will not be very informative because

its coefficients are too complicated to be presented in print. They can, however, be
requested from the author in the form of a C-programme subroutine . Instead we
will summarize the lattice effective lagrangian for a cubic spatial lattice of N sites
in each spatial direction.
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2 +a,(N)

	

FTr(l-Uj(t+l)Uj V(t))
90

	

~ i

N4

+

	

2 FTr(l - Uj(t)Uj(t)Uj'1'(t)Uj f(t)) + y j (N) Frj2
9()

	

ij

	

i

2

	

1: 21.4ri+ Y 2 (N) E ri4 + Y3(N) F, ri2 rj + y4(N ) 1: ri6 + y_5(N )

	

d

	

i
i

	

i>j

	

i

	

i*j

2Fa2+a4(N)I:ri ij +a_5 (N)det 2 C .

ij, a

a2( N) 1:

	

a2

	

2Fa2
.d F4

	

Ij

	

+ a 3(N) r, ri

	

ik
ij, a

	

ijk, a

(8 .5)

*When comparing with the publications predating ref. [4a], one should be aware that a3 was listed
with the wrong sign (e .g . K8 =a3 in table I of ref. [61 should flip sign) and that in table I of ref. [4a]
a, should be divided by 10 . We intend to avoid any such errors here .

Note that al.2~ "Md-3 a1, 4

J3 1 1 .6277104 E - 4 3.0104661 E - 1 x ( 1 +(g/27r)2 ) 2.1810429 E- 2
P:! 1 .7090842 E - 4 1 .4488847 E -3[ -9.9096768 E - 3(g/27r)21 7.5714590 E - 3
163 -5 .3548699 E - 4 y; 1 .2790086 E -2[ +3.6765224 E - 2(g/27r)2 ] 1 .1130266 E - 4
134 8.9375854 E - 4 4.9676959E-5[+5.2925358E-5(g/2-.r)2 1 a4 2.1475176 E - 4
135 6.7878476 E - 4 y.; = -5.5172502 E -5[ + 1 .8496841 E - 4(g/2 r)2] a:5 1.2775652 E - 3
13t, = 5.3557697 E - 4 -Y,= - 1 .242-3581 E -3[ -5.7110724 E - 3(g/2-.. )2]

13 7 = 1 .1979070 E - 3
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Here Uj is an SUM matrix which is related to the zero-momentum gauge field ci
by

~£r

	

( ri )Ui =Cos( -'i ) + iy, 'i a
sin

	

(8.6)2N a ri 2N~

where o,,, are the Pauli matrices . This implicitly determines r, (since we will only
need 0 < ri < 7r, there is no ambiguity). Furthermore, the identities

r2r2
i

j

	

-

TrO - uiuiui«luit),r,i,2( ri ),i,2( i
2N 2N

allow one to express this effective lagrangian entirely in terms of the variables Uj.
Table 5 will present numerical results for the coefficients at a few values of N (see
table 3 for general N). The perturbative expansion of the effective theory is thus
given by the path integral

231

(8.7)

F,dUj expl
- f

Lrff(Ui(t))]

	

(8.8)

Note that time is discrete, as on the original lattice . This partition function
therefore defines a transfer matrix whose logarithm gives the lattice effective
hamiltonian, see sect. 5 for details. To describe the non-perturbative dynamics in
intermediate volumes one has to incorporate the fact that the zero-momentum
configuration space is compact. In the hamiltonian analysis this is achieved by
imposing appropriate boundary conditions at ri = ,;T . An alternative formulation
for the lattice effective theory will be discussed at the end of this section.

First we will review the choice of boundary conditions [6,71, associated to each
of the irreducible representations of the cubic group 0(35, Z) and to the states that
carry electric flux [8]. The best way to describe these boundary conditions, is to
observe that the cubic group is the semi-direct product of the group of coordinate
permutations S3 and the group of coordinate reflections Z3. We denote the parity2

under the coordinate reflection ci'

	

ci' by pi	1 . The electric flux quantum
number for this direction will be denoted by qj = + 1 . This is related to the more
usual [6,8] additive (mod 2) quantum number ej by qj = exp(i,7re,) . Note that for
SUM the electric flux is invariant under coordinate reflections . If not all of the
electric fluxes are identical the cubic group is broken to S2 X

Z3, where S2 (_ Z2)2

corresponds to interchanging the two directions with identical electric flux (un-
equal to the other electric flux). If all the electric fluxes are equal, the wavefunc-
tions are irreducible representations of the cubic group. These are the four singlets
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which are completely (anti-)symmetric with respect to S3 and have each of
the parities pi	1. Then there are two doublets E ±, also with each of the
parities pi	Iand finally one has four triplets T,±(2). Each of these triplet states
can be decomposed into eigenstates of the coordinate reflections. Explicitly, for
T ±(2 we have one state that is (anti-)symmetric under interchanging the two- and1(2)
three-directions, with P2 = P3 = _P I = T 1 . The other two states are obtained
through cyclic permutation of the coordinates. Thus, any eigenfunction of the
effective hamiltonian with specific electric flux quantum numbers qj can be chosen
to be an eigenstate of the parity operators p, . The boundary conditions of these
eigenfunctions W,,,(c) are simply given by

W9,P(C) 1"'=' = 0,

	

if piqj = - 1,

0,

	

if piqj = + 1,

	

(8.9)
clri

and one easily shows that with these boundary conditions the hamiltonian is
hermitian with respect to the inner product

<Vf' W'> =
fri <=

d9c W*(c)V(c) .

	

(8.10)

For negative parity states this description is, however, not accurate [7]. Including
those would require a much more detailed analysis [24]. Also note that for T2 the
boundary conditions stated in ref. [6] effectively correspond to a state with two
units of electric flux [71 which was later called

	

(see ref. [271 and DaD.
The bounddry conditions arise due to the topological non-trivial nature of

configuration space, which forces one to formulate the theory on different coordi-
nate patches (for SU(2) eight in total). There is a nice trick [271 which avoids
using boundary conditions. In essence it is based on the fact that the boundary
conditions imply [3a] that we formulate the theory on S' . Each three-sphere is3
associated with one ri. The equator corresponds with ri = ,r and it divides the
three-sphere in the two-coordinate patches. Since S3 can naturally be identified
with SU(2), we can choose our coordinates to be labeled by an SUM matrix Vi.
The two coordinate patches are distinguished by sign(Tr(Vi )) . The relation be-
tween the variables Vi and c' is almost identical to what we found for the lattice in
eq. (8.6)

'0,Vi =cos( "i ) + i y, '

	

sin

	

r
i )2 a ri (2

and one easily verifies that Vi = Uj'. One coordinate patch is defined by 0 < ri < 7r,
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for which the relation between Uj and Vi can be inverted uniquely. By defining

IINUj = jsign(Tr(Vj))Vj)

	

(8.12)

both coordinate patches of V, are mapped on 0 < r, < 7r . Since V, continuously
matches the two coordinate patches, it can be shown ([27b]) (see also [3a]) that
the boundary conditions are automatically and correctly implemented, provided
the integration measures for the two coordinate patches match continuously at the
equator of the three-sphere . Since

U4 - Tr(

	

i)2

NdUj = I- -

	

dVj ,

	

(8.13)
4 - Tr(V,)2 )

this is easily seen to be satisfied. The effective lattice theory including the
intermediate volume non-perturbative behaviour can now be formulated in terms
of an SU(2) lattice gauge theory for a lattice that has only one site in each of the
ree spatial directions

dV,(t)expj - E LCff(UjjVi(t))) 1,
i, I

	

t

_Tr(UN)2) - (ULeff(Uj ) = L~,ff(Uj ) + E (ln(4

	

i

	

-In(4

	

Tr

	

i)2)) .

	

(8.14)

This way of formulating the lattice effective theory allows one to use the Monte
Carlo method to measure the masses of the various states. Michael [27b] provides a
list of operators with the appropriate quantum numbers. Since the number of
degrees of freedom is drastically reduced, it should not be difficult to acquire a
reasonable numerical accuracy with modest computational effort . In this way one
can avoid the complicated computation of sect. 5 for the logarithm of the transfer
matrix.

This research has been made possible by a fellowship of the Royal Netherlands
Academy of Arts and Sciences .
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